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J .  Phys. A: Math. Gen. 18 (1985) 1457-1474. Printed in Great Britain 

The effects of noise on iterated maps 

J M Deutsch: 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, U K  

Received 31 August 1984, in final form 28 November 1984 

Abstract. The properties of a simple one-dimensional iterated map in the presence of noise 
are examined. It is demonstrated that there are three distinct classes of noise that generate 
three ‘phases’ of the iterated function. Each phase shows universal properties that are 
independent of the specific form of noise, if this noise is chosen from a given class. The 
physical interpretation of the model in terms of aggregation is discussed. 

1. Introduction 

The effects of noise on iterative maps have been extensively investigated in recent 
years (Huberman and Rudnick 1980, Shraimari er a1 1981, Crutchfield er al 1981, 
Hirsch et a1 1982, Feigenbaum and Hasslacher 1982). This work has concentrated on 
the effects of noise on the transition to chaos. For example, the one-dimensional map 
(Feigenbaum 1978) of the form x,+, = h(x,)+&, where h(x)  is a continuous function 
with a parabolic maximum and 6, is a random variable, has a Lyapanov characteristic 
exponent which has been shown to satisfy scaling laws near the transition to chaos. 
Another functional form (Geisel and Nierwetberg 1982) of h ( x )  = x - p s i n ( 2 ~ x ) ,  leads 
to the onset of deterministic diffusion as the parameter CL is varied. In the presence 
of noise it was shown that the diffusion coefficient satisfies universal scaling laws near 
the transition to diffusion. 

Here we find transitions induced by noise in iterative maps with properties that 
are very different from others previously studied (a  brief account of some of the results 
found here is given in Deutsch (1984)). To illustrate the nature of these transitions 
we consider a particularly simple map where exact results are obtained; we study the 
effects of random noise on iterations of h ( x )  = x, corresponding to the case p = 0 in 
Geisel and Nierwetberg’s work. The properties of this function as it is iterated are 
trivial. However, the introduction of noise induces large changes in functional 
behaviour as the number of iterations go to infinity. A major difference between this 
and previous work is that in the present work there is no transition in functional 
behaviour in the absence of noise. Also the properties described here involve the entire 
iterated function, whereas previous work has concentrated on the iterated function 
evaluated at some arbitrary point. We will show that it is possible to define ‘order 
parameters’ for the different ‘phases’ that the map is in. Each ‘phase‘ of the map 
corresponds to the particular class of functions that are accessible by iteration (i.e. 
have non-zero measure in the ensemble of the added noise). Which phase the map is 
in is determined by the type of noise that is added. It is surprising to note that the 
transition between different phases is accompanied by non-analytic behaviour only for 
f Present address: Institute for Theoretical Physics, University of California, Santa Bdrbara, California 93106. 
USA. 
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1458 J M Deutsch 

some ensembled averaged quantities, and not for others. In fact, it is the probability 
distribution of derivatives of the iterated function, and not the probability distribution 
of the function at a given point, that determines the order parameter for the system. 

2. The model 

The iterative map g,(x) examined here is of the form 

g,(x) = f n ( f n - l ( .  . .(fI(X)). . . ) I  

.L(x) = x +  E,(X) ( 2 )  

( 1 )  

where 

and E,(x) is a random function that is continuous and differentiable, whose statistical 
properties are independent of x. That is, for a general functional r and for all xo 

E, (XI)) = (U E,(X + xo))). (3 )  

Here the average (. . .) is taken over the probability distribution of E,(x). Every random 
function e, with subscript i is statistically independent of all other random functions 
with different subscripts. For simplicity, we set (E,(x)) = 0. 

Since the properties of the noise are translationally invariant, the statistical properties 
of (g,(x) - x)  should also be translationally invariant, since for a general functional 

( ~ ( g , ( x ) - x ) ) = ( ~ ( E I ( X + e 2 ( X + ’  . 
=(r(EI(X+Xo+E2(X+Xo+.  .)))) 

= (r(gn(x+xo) - ( x +  ~ 0 ) ) )  (4) 
for all xo. There is also a dilation symmetry whereby the noise amplitude can be scaled 
down, with a corresponding increase in spatial frequency, i.e. if x + x /a  and e,(x) + 

UE,(X/U) then g,(x) -+ ag,(x/a). This observation implies that we can choose the 
amplitude of the noise to be arbitrarily small and still maintain the same spatial 
properties as in the case of high amplitude noise, as long as we rescale the x axis 
accordingly. If there are different phases, depending on the type of added noise, the 
amplitude of the noise by itself cannot determine which phase the map is in. There 
must be dependence on spatial characteristics as well. We will see what quantities are 
relevant to the transitions in the next section. 

3. Calculations 

In order to understand the behaviour of g,(x), we now calculate some simple averages. 
The probability of gn(x) taking a value a, at point x, is simply 

pn(a; ~ ) = ( a ( g n ( x ) - a ) )  =I[ 6 ( Y + E ( Y ) - a ) P n - l ( Y ;  X)P(E)  dy dE 
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where P ( E )  is the probability of the noise taking a value E.  Thus P,(a;  x )  is the 
probability distribution for a random walk that starts at point x,  i.e. for large n 

with (T, = n(.s2). It is clear that this distribution shows no change in analytic structure 
as the type of noise ( P (  E ) )  is varied. It is shown below, however, that the probability 
distribution for the derivatives of g,, p , ( a ) ,  does show a change in analytic structure 
as the probability distribution for the derivatives of f ( x ) ,  p ( a ) ,  is varied. The equation 
for p , (  a )  is 

pn(a) = ( S ( g k ( x ) - a ) )  

= (6 ( Y n  (gn - I ( x  ))gk - I ( x )  - a 1) 

To solve this equation, separate the integral into positive and negative regions of 
integration: 

We now introduce the two-sided Laplace transforms 
X 

It what follows, we shall assume for simplicity that these are defined in the range 
--CO < s < -CO. However the results can be trivially generalised to the case where &(s) 
and u* , (s )  are only defined on the interval sI < s < s,, where sI is less than one and s, 
is greater than one. This corresponds to the restriction on p that 

where Q > -1, and 
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where p < - 1 .  Therefore (10) becomes 

f,(s) = f(s)f ,-I(s)+ 6 ( S ) 6 , - l ( S )  

6,(s) = 6(s)f,-,(s)+ f(s)6,-,(s). 

Adding and subtracting these the equations gives 

f,(s) + 6(s) = ( f ( s )  + 6(s))” 

f,(s) - 6(s) = ( f ( s )  - 6(S)),. 
So we obtain the solution equation (7 )  

f,(s) =$(G(s)+ 6(s))n+(f(s)-  C(s)),] 

u* , (s )  = $( f ( s )  + 6(s)), - ( f ( s )  - 6(s))”]. 

Now we discuss some general properties of u, (s ) .  Because u , ( x ) ,  u n ( x ) > O ,  f,(s), 
6, ( s )  > 0. Since 

p,(w) dw = 1 

wpn(w) dw = 1 

I 
I 

then for any distribution other than the trivial case p n (  w)  = 6( w - l ) ,  lims-.*m f, = 00. 

Furthermore, it is easy to show that both the functions f,(s) and fn(s)+6,(s)  have 
only one minimum. This will be shown for f,( s). The proof for the case of f,(s) + f i n (  s) 
is identical. If we assume the converse, that there are two minima at s, and s2, then 

(16) 
--f,,(s)I d =I ye”u,,(y)dyI = O .  uc 

ds s=s I ,sz  --cc s=s1.s2 

I : >  I : ,  z; < z; (18) 

but by equation (16), I :  = Z; and I :  = I ; ,  which implies by equation (18) that Z: < I :  
which is a contradiction. Therefore there is only one minimum of f,(s). 

We now discuss the case where u ( x )  = O  for all x. We label this regime 1. This 
corresponds to the case where the functions J ( x )  are all monotonic. Equation (15) 
implies that f ( 1 )  = f (2 )  = 1,  so that the asymptotic limits of f(s), together with the 
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fact that u , ( s )  has only one minimum, implies that G(s) < 1 for 1 < s < 2. A sketch of 
t i ts)  is in figure 1. Therefore limn+m ti,(s) = tin($) = O  for 1 < s <2.  

Define the 'order parameter' 

O+= E + + O  lim n-m lim /;p,,(w)dw 

= lim lim IX eYu,(y)dy. 
x+-mn+m -m 

1 2 
5 

Figure 1. The function i ( s )  + C(s) plotted against s as defined by equation ( I  I ) ,  sketched 
in all three regimes. In regime I ,  U^(  I ) +  fi( 1) = G ( 2 )  + C(2) = I and the minimum of the 
function is when s is between 1 and 2. In regime 2, the minimum of U ^ ( s ) + C ( s )  is still 
when s is between I and 2, but now u'(2)+ 0'(2)> 1. In regime 3, the value of s where the 
minimum occurs has shifted to less than I .  

By choosing any 4 such that 0 < 4 < 1 we have 

1 - 0 + =  lim lim 
x-.-m n-m 

= lim lim e - q x G n ( 1 + 4 ) = ~  
x--m n+ac 

so that O+ = 1 in regime 1. Note that reversing the order of the limits in equation (19) 
so that 

0' = lim lim 1; pn(y) dy 
n-m E + + O  

implies 0' = 0 instead of 1. This situation has an analogy with more conventional 
order parameters. For example, consider a magnetic system given random spin flip 
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dynamics (as in a Monte Carlo simulation). Denote the brackets (. . .) as the ensemble 
average over all random numbers employed. Suppose at time t = 0, we start the spins 
in an unaligned configuration so that ( S ( 0 ) )  = 0. The order parameter, 0, represents 
the average magnetisation of a spin S in the ordered phase so that 

0 = lim lim(s(t, h ) )  = lim lim Ioh (9) dh'  
h + + O  1-m h-+O r-bm 

(where h is an applied field) which has a non-zero value. However, if we reverse the 
order of the limits then 0 = 0. The similarity between the transitions in these maps 
and conventional statistical mechanics is similar to the interpretation of the effects of 
noise on the transition to chaos in the mapping used by Feigenbaum. The interpretation 
given by Huberman and Rudnick (1980) (also see Crutchfield et al 1981) is that 
the amplitude of the noise is analogous to the strength of an applied magnetic field 
near a phase transition. This is because noise has the effect of smearing out the period 
doubling sequence causing what they call a 'bifurcation gap'. In other words, adding 
noise to the Feigenbaum map stops the infinite cascade of bifurcation from occurring, 
which is similar to the effects of a magnetic field, in that a magnetic field also smears 
out the transition between the ordered and the disordered states. In the transitions 
discussed in this paper, however, the amplitude of the noise does not control the phase 
of the map. It is the derivative of the noise that is important as can be seen from the 
definition of the order parameter. 

Now we discuss the case of non-zero u(x). There are two cases to consider 
depending on whether the value of s that minimises U * ( $ ) +  i?(s) ,  denoted by s*, is 
greater or less than 1. We call the case where s* > 1, regime 2, and the case s* < 1, 
regime 3 (see figure 1) .  Both u * ( s ) ,  i? (s )> 0 so that 6, + u*,(s)> G,(s) - i?,(s) and by 
equation (10) G (  1) + i?( 1) = 1. This implies that in the neighbourhood of s = 1, G(s)  - 
i?(s)  < 1 .  Equation ( 1 % )  implies that 

0 

~ n ( 2 ) - i ? n ( 2 ) = ~ o m x p ( x ) d x + ~  --oc x p ( x ) d x = l .  

This means that &(2) + i?,(2) > 1 as illustrated in figure 1. So in regime 2 ,  and for 
some sufficiently small s >  1, one has that 

lim G,(s)< lim ( G ( s ) + i ? ( s ) ) " = O  
n+m n+m 

so that u, , (s)  = v , ( s )  =O. 
We now define a new order parameter 

p , ( y )  dy 0- = lim lim 
E - + O  n - m  

and observe that in regimes 2 and 3 that 
f m  

lim J u,(x) d x =  lim ; , ,(I)=; 
n-co  n-m 

r m  
lim J u,(x) dx  = lim 6,,( 1 )  =$. 
n - m  n-bm 

Then, using arguments analogous to those used in regime 1, we have that for some 
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sufficiently small q > 0 

f- O+= lim lim 
x+-m ,-a 

X 

s lim lim 5 eYu,(y) eq(Y-x) d Y 
--a, x--a: ,-a3 

= lim lim 1 + q )  = 0 (26) 
x---a, ,+os 

so that O’, and similarly 0- = f in regime 2. In regime 3 we define two parameters 
which we will see later represent ‘disorder’: 

r *-a, 

Di = * lim lim J p , ( w )  dw. 
X-02,-a:  * x  

Then it is straightforward to show that D+ = D-  = f in regime 3. 
In summary we have that in regime 1, 0’ = 1, 0- = 0, D’ = D- = 0. As soon as 

we let u ( x )  become non-zero, we enter regime 2 which means that there is a discon- 
tinuous change in order parameters to O’= O-=$  and D+= D-  = O .  Then as the 
variance of p ( x )  is increased, there is another discontinuous jump whereupon O+= 

To make the above remarks more transparent, we will consider some explicit forms 
O-=O and D+=D-=’ 2. 

for p (  w )  that illustrate the three different regimes. First consider 

1 0  w < a  

a <  w < 2 - a  

w > 2 - a  

1 
2(1-a)  

where 0 < a < 1. This satisfies the conditions of equation ( 1 9 ,  and g , ( x )  should be in 
regime 1. So equation (14) gives &(s) = u*”(s), so that for large n, u , ( x )  should be 
approximately Gaussian with a mean x = fn[ln(2 - a )  +In( a) ] ,  and a variance {ln[(2 - 
a ) / ~ ] } ~ n /  12. As n goes to infinity x goes to infinity linearly whereas the width of the 
Gaussian increases as n”’. So u , ( x )  is compressed towards x = 0 as n goes to infinity. 
If we define I n ( x ) = l  j , ” p , ( x ’ ) d x ’ l  then as n increases Zn(x) also increases and 
approaches 1. This is because for any x > O ,  we find that for large enough n, p , ( x )  
has compressed to fit almost completely inside the interval between 0 and x. I , ( x )  for 
regime 1 is illustrated in figure 2(a).  The arrow denotes the direction the function 
shifts with increasing n. 

Next we consider p (  w )  in either regime 2 or 3: 

w < - a  

which satisfies equation (15a ) .  Equation (156) implies that a = [ ( b -  1)*- 1]”2. Now 
we want to calculate I , ( x )  for x > 0. We first observe that the second term in equation 
(14a) ( U I ( s ) - C ( s ) ) “  gives negligible contribution to Z,(x) for large n as was shown 
above. To calculate the contribution from (il(s)+ C(s))”, we take the inverse Laplace 
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- I  7 

f '  

f' 

f '  

Figure 2. l,(f) plotted against f in all three regimes where I ,  is defined in the text. In 
( a )  regime 1 is shown. As n increases, I ,  is compressed towards the vertical axis. I ,  is 
zero for f < 0. In ( b )  regime 2 is shown. As n increases, 1, becomes more symmetric but 
compressed towards the verticle axis. Regime 3 is shown in (c ) .  As n increases, I ,  expands, 
away from the vertical direction. 

transform, i.e. for large n 

[ ( L  5'' esy dy)'] b 
Y I ( & ( s ) )  = 3 - I  

dk 
1 exp[ik(x-n In b)] - 

(ik)" 

- ( n  In b-y)"- '  - 
b " ( n - l ) !  

for y < n In b. Therefore 

(In x/ b")"-' 
p" (x)=  b " ( n - l ) !  

for x < b". I,,(x) for large n becomes 

The maximum in this integrand occurs at y = 1 + n ln(b/e). When b <e ,  the maximum 
of the integrand moves linearly with n in the negative y direction, as in the first 
example, and so 0'= O - = $ .  However, for b >  e, the maximum of the integrand 
moves linearly with n in the positive y direction so that 0' = 0- = 0 and D+ = D- = t .  
In(x)  is illustrated in figures 2(b)  and 2 ( c )  in regimes 2 and 3, respectively. 
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Using these results, the behaviour of the function g,(x) for large n can now be 
discussed in the three separate regimes. In regime 1, g,(x) must be monotonic, i.e. 
gh(x) > 0, and since 0' = 1, the probability as n tends to infinity, that the slope is zero 
at any arbitrary point, is unity. Therefore the function consists of random 'steps' of 
average width and separation proportional to n since by equation ( 5 ) (  (g, (x )  - x ) ~ )  
is proportional to n. The slope of the steps increases exponentially since (gf(x) )= 
( ( f ( x ) ) ' ) "  increases exponentially with n. As n is increased, adjacent steps randomly 
shift position until they 'collide' forming a larger step. In regime 2 

(I g k ( x ) I) = (I fn ( gn - I ( x) )g h - I (x) I) = (If'( x )I )" ( 3 2 )  

which diverges exponentially. This represents the average length of path g,(x) traces 
out, projected onto the direction of the y axis. Since Of = 0- = f then as in regime 
1, as n tends to infinity, the probability that the slope is zero at any arbitrary point, 
is unity, which implies that in this regime there are either a large number of 'kinks', 
i.e. portions of the curve with a large ratio of height to width, or a large number of 
downwards steps, or both kinks and downwards steps. We will see in § 4 that if we 
iterate a function consisting of upwards and downwards steps of finite width, then the 
number of downwards steps per unit length goes to zero. Therefore as n goes to infinity 
the number of kinks increases exponentially while the total fraction of the x axis 
occupied by kinks goes to zero. In regime 3 ,  and as n goes to infinity, the total fraction 
of the x axis occupied by kinks goes to 1. This means that the function oscillates on 
very small length scales, the average frequency of oscillation diverging exponentially 
with n. These remarks will be confirmed in P 5 when we discuss the numerical 
implementation of the maps. 

4. The discretised model 

To further elucidate the nature of these transitions, and to give a natural physical 
interpretation of these mappings, the analogous problem described by equations ( 1 )  
and (2) was studied on the integers. The variable x is now defined on the integers, as 
is the noise E(x).  This discretisation eliminates the high frequency components of 
g,(x) that occur in regimes 2 and 3 .  

The physical interpretation of this map is as follows. Consider particles on a 
one-dimensional lattice. Each iteration of the map corresponds to evolution of the 
particles' motion to the next time step. At time t = 0 the ith site contains a particle 
labelled i. At time t = 1, sitefl(i) contains the ith particle, so that particle i has hopped 
a distance E l ( i )  in the first time step. Site fl(i) may contain more than one particle, 
i.e. if f l ( i ) = f l ( j )  then site f l ( i )  contains both particles i and j .  This situation is 
illustrated by an example for six particles in figure 3. The transformation plotted in 
( a )  interchanges particles 1 and 2, and 5 and 6. It maps both particles 3 and 4 into 
site 4, leaving site 3 vacant. At t = 2, the next iteration transforms the position of the 
ith particle from f l ( i )  to fi(fi(i)). For t r= n, the value of i labels each individual 
particle, and the value of gn( i) labels the position along the lattice. As a consequence 
of these dynamics, two particles occupying the same site will move together in all 
subsequent time steps. Thus the discretised version of equations ( 2 )  and ( 3 )  describes 
a problem of aggregation where the diffusion coefficients of the aggregates are all equal. 

With this physical interpretation of the discretised maps, we see that the probability 
of particle i being at site j after n steps is Pn(i;j) as is given by equation (6). As in 
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L 
1 2 3 4 5 6  

lb l  .- 
1 2 3 L 5 6  

2 1  3,4 6 5 

Figure 3. ( a )  An example of a random iterationf,(x) restricted to the integers and ( b )  its 
corresponding interpretation as the dynamics for aggregating particles (see the text for a 
full explanation). 

the continuous case, equation (6) shows no change in analytic structure as the hopping 
probabilities between sites, P (  E ) ,  are varied. In the discretised model, it is not possible 
to define a probability distribution for the derivatives of g,. Therefore in order to 
com,pare the behaviour of the continuous case with the discretised problem, we consider 
the probability that g f l ( x z )  - g,(xl) = a after n time steps, which we call p , ( a ;  x2 - x,). 
Then 

p , ( a ;  A x ) = ( 6 ( g , ( x + h x ) - g f l ( x ) - a ) )  

= ( ~ ( ~ f l - l ( f l ( x + ~ ~ ) ) - g , - l ( f l ( x ) )  - a )  

r 

The discretised version of equation (33) is the probability that g,( j )  - g n (  i) = a, p n ( a ;  j - 
i )  and similarly 

Now we concentrate on the case where the correlations in E ( X )  are local. This 
corresponds to the forces between the aggregates being short ranged. In particular, 
we look at the case where each aggregate hops independently until it hits another 
aggregate. We want to determine the form of p l ( k ;  j ) ,  and to do so, consider the 
probability Q(m; I )  that a function f,(I) equals m. Then because of translational 
invariance (equation (3)), Q(m; I )  = Q(m - I ) .  So for j # 0 

p l ( k ; j )  = C Q ( m  - I - j ) Q ( n  - I ) 6 m - n , k  
m, n 
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where p ( k )  is the probability that two particles on different sites, will have changed 
in relative position by a distance k in one time step and since the function f(j) is 
single valued, for j = 0 

pl(k;O)=ak,O (36) 

Laplace transforming p , (  a ; j) with respect to n, and decomposing j into its Fourier 
components defines P5(a, q)  as 

L1. 

P5(a ,  q )  = lo e-”’ ei4’p,(a; j) dn. 

So equation (34) becomes 

The second term in this equation expresses the initial condition that p o ( a ;  j )  = aaJ. 
After some tedious algebra this can be solved to give 

For a = 0 this can be simplified further to give 

The inverse Laplace and Fourier transform of P5(a ,  q)  is 

Ps(a, q) eiq’ dq ens ds. (42) 

To obtain p , ( a ;  q), we will consider a specific form for p ( j ) .  The results apply 
qualitatively to the general case. We take Q(I )  to be 

where A is a parameter. This means that in one time step the probability of an aggregate 
remaining at the same site is 1 - A ,  and the probability of moving to an adjacent site 
is A. 

The detailed calculation of p n ( O ;  1) is relegated to the appendix. To leading order 
in l / n  the result is 

1 1 1 
2 [ A (  1 - A)]’’2 ( TTT~)”*’ 

p,(O; 1 )  = 1 -- (44) 

So for A not equal to 0 or 1,  aggregation occurs and the behaviour of g, is similar to 
that of regime 1 in the continuous case. For A = 1, aggregation cannot occur between 
adjacent sites. Odd numbered sites aggregate with each other as do even numbered 
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sites (i.e. p,,(O; 1 )  = 0). This behaviour- is similar to regime 3 of the continuous case, 
but only occurs for A = 1, instead of being present over a continuous range of para- 
meters. 

5. Numerical calculations 

To investigate the map numerically, the simplest algorithm would be the following. A 
finite interval, from 1 to N, is chosen. At every integer i in this interval a random 
number ~ ( i )  is generated of variable amplitude. We take the random numbers to be 
evenly distributed from -a  to a. The three different regimes can be investigated by 
varying the value of a. The function in equation (2) can then be calculated on the 
integers. To obtain the value o f f n ( x )  for an  arbitrary real number on this interval we 
take f n ( x )  to vary linearly between the integers, i.e. 

f n ( x )  =f,(int(x)) + (x  -int(x))(f,(int(x) + 1 )  -f,(int(x))) (45) 

where int(x) stands for the largest integer less than x. So g,(x) can be computed from 
g,-l( i)  by setting x = g,-,( i )  in equation (45). The only numbers that have to be stored 
at the nth iteration are g , - , ( i )  andf,(i) ,  for i =  1 to N. 

There are problems with such an algorithm in all three regimes. In regime 1, the 
slope at  an  'edge' is not properly determined as g,(x) is only sampled at finite intervals, 
and so the behaviour in this regime cannot be completely verified. In the preceding 
section it was established that as n tends to infinity, the proportion of the x axis 
occupied by kinks goes to zero, hence the probability of sampling a kink goes to zero 
for large n. Therefore regime 2 will appear to behave the same way as regime 1, i.e. 
g,(x) will have the form of ascending steps for large n. In regime 3, the iterated 
function should oscillate at arbitrarily high spatial frequency as n tends to infinity, 
but because the function is only probed at finite intervals, it will look as if the average 
frequency of oscillation is approaching a constant, namely the inverse of thz distance 
between adjacent sampling points. 

One might try and eliminate the above difficulties by sampling the points at equal 
intervals but very close together compared to the variations in fn(x).  However the 
arguments in the last paragraph point out that this will not be satisfactory. In other 
words, although fn(x) is a continuous function, the iterated function g,(x) approaches 
a discontinuous function in all three regimes as n goes to infinity, so even sampling 
of points does not give satisfactory results. These remarks were verified by implementing 
the above algorithm on a computer. 

An improvement on this method is to sample points at variable intervals that depend 
on the value of the iterated function, so that all portions of the iterated function are 
probed. We label the points being sampled in the ( n  - 1)th iteration ~ " - ~ ( i )  where i 
takes the values 1 to m, and m, which is the total number of points being sampled in 
iteration n - 1 ,  will in general increase with additional iterations. The algorithm 
employed is such that the points xn- l ( i )  sample all the minima and  maxima of gn - l (x ) .  
To see how this is done, we proceed by inductive reasoning and first examine the 
procedure by which the points x,( i)  are generated. 

The points x,-, ( i )  have the natural ordering 
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I 
1 2 3 4 5 6 1  8 9  

Figure 4. Illustration of the construction of iterated functions using the method described 
in the text. The upper left-hand graph shows gn- , (x) .  The numbers on the horizontal axis 
label the positions of xn- , ( i ) .  In the upper right-hand graph, additional points have been 
marked where g,-](x) has integer values. All the marked points correspond to x coordinates 
labelled x (  I ) ,  . . . , x(9). The lower left-hand graph shows the functionf,(x) which changes 
slope only at the integers. Finally fn(gn-](x))  is shown. The points x,(i) allow one to 
correctly compute all the maxima and minima since the function fn(x)  varies linearly 
between the integers. Hence this method gives an exact reproduction of g,(x) for all x. 

as displayed in the upper left-hand graph of figure 4, where the numbers on the 
horizontal axis represent the subscript i. Between an interval {xn-l(i), x,-,(i+ 1))  the 
following procedure is implemented. All values of x inside this interval with the 
property that gn-I(x) is an integer are generated. This is easily done since the function 
g,-l(x) is linear on this interval. This is because we are takingf,(x) to be of the form 
given in equation (45), so the iterated function g,-l(x) must be composed of linear 
sections (this is explained in more detail below). These values of x (that correspond 
to g,_,(x) being integer valued) are then stored for the intervals 

in addition to the coordinates xn-,(i). All of these coordinates are then renumbered 
according to inequality (46) and are stored as the array x,(i) (see the upper right-hand 
graph of figure 4). The iterated function g,(x) is generated from the array x,(i) by 
computing fn(gn-,(xn( i))) (see the bottom two graphs in figure 4). Note that between 
x,(i) and x,(i+ l ) ,  g,(x) is linear since the interval {g,,-l(x,,(i)), g,-,(x,(i+ 1)))  can 
only contain an integer value at its beginning (g,-,(x,(i))) or its end (g,-I(xn(i+ l ) ) ) ,  
so the function fn(x) is linear on this interval and therefore so is g,(x). So we can 
proceed to the next iteration by applying the same procedure as above to the array 
x,( i) to obtain the array x,( i + 1 ), and so on. 

Some illustrations of functions generated with the above algorithms are shown in 
figures 5-7, showing the iterated functions in all three regimes. 
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X 

Figure 5. A sequence of 148 iterations of the map shown in steps of 37, using the algorithm 
shown in figure 5. In this case a = 0.45 so the functionsf;(x) are monotonic, and so g , (x)  
is in regime 1 .  20 random points are selected on each iteration according to equation (45), 
i.e. x ranges from I to 20. 

jr- 60 

r-- 

Figure 6. A sequence of 60 iterations of P map with a = 0.75, shown in steps of 15. Again 
the values of x range from 1 to 20. It is clear from the behaviour of the iterated function 
that is in regime 2. The last frame (lower right-hand corner) shows part of the function 
on the 60th iteration blown up to illustrate the kinks that are generated in regime 2. 

6. Conclusions 

In conclusion, we have shown the existence of a new type of transition induced by 
noise that occurs in iterative maps. The transition between regimes 2 and 3 are 
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Ire 7. f , ( x )  and g6(x) with a = 3.0. The interval along the x axis is between 1 and 20. 
The last frame (right-hand side) is a blown-up section of g6(x), showing the peculiar high 
frequency structure characteristic of regime 3 .  

reminiscent of the onset of turbulence, in that an instability forms whereby some 
wavelength fluctuations become unstable. The analogy can be made more specific by 
considering a fluid at time t and at some later time, t +  T. There is a transformation 
that maps all the points in fluid at time t to all points at time t + T. In general, this 
map will depend on the complete velocity distribution of all the points. If we make 
the crude simplification that the transformation shifts points in space by random 
amounts (which might mimic the nonlinearity of the equations of motion), then we 
arrive at the three-dimensional version of equation (1). To prevent ‘aggregation’ of 
points in space as occurs in the one-dimensional case, we can require that the Jacobian 
of the transformation at every point equal 1, which makes the fluid incompressible. 
It has also been shown (Deutsch 1985) that these maps are closely related to the 
behaviour of non-interacting particles in one dimension, with inertia in a viscous media 
subject to a random force f(x, t ) .  The random force is correlated only locally in space 
and time as 

(48) (f(x, t)f(x’, t ’ ) )  = g(x - x’)S( t - t ’ )  

where g(x) is a rapidly decaying function with a parabolic maximum at x=O. The 
equation of motion of a single particle in such an environment is 

m x + v x = f ( x ,  t )  (49) 

where m is the mass of an individual particle and Y is the friction coefficient. If we 
consider the motion of this particle on its own, then for long times ( x 2 ) a  t (in analogy 
with equation ( 6 ) ) .  Now consider many particles that are equally spaced at t = O  all 
obeying (49). When m is below some critical value that depends on g(x) and v, the 
particles aggregate. Particles come together forming aggregates, these aggregates come 
together forming still larger aggregates, and so on. The analogy with the maps 
considered in this paper can be made more specific if we plot the final position of 
particles as a function of their initial condition. As time progresses, the function 
develops sharp steps similar to what is obtained in regimes 1 and 2 of the maps. The 
pieces of the function having nearly zero slope represent aggregates. The number of 
iterations of the map is analogous with the time parameter in (49). When m is above 
the critical value mentioned above, particles cease to aggregate, and one obtains 
behaviour similar to regime 3 of the random maps considered in this paper. 
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Appendix 

In this appendix, the detailed derivation of (44) is presented. By (35) 

(Al l  
A2 A2 

p(q)  =-+ ( 1  -A)2+2A( 1 -A)  COS q +-COS 2q. 
2 4 

If the integral in equation (42) over q is performed first, we are left with an integral 
in the complex s plane. The integrand has a set of branch cuts parallel to the real 
axis. The values which determine the locus of the branch cuts, sb, are given by the 
condition that for some -IT < q < 7r 

€3 = p ( q )  (A21 

since the integrand picks up an imaginary part and is therefore discontinuous between 
the points sb+iE and sb-iE. It is clear that the branch cuts all end where Re(s) = 0, 
since the maximum value of p (  q) is at p ( 0 )  and equals 1. If p (  q)  > 0 for all -7r < q < 7r 

then the branch cut will start at s = In( pmin) + 27rni, with n being any integer and pmin 
being the minimum value of p(q) ,  and the cut ends at s = 27rni. If pmin < 0 there will 
be an additional set of branch cuts starting at s = In pmin+ (2n + 1)vi and ending at 
(2n + 1 ) r i .  In the case of interest, however, p ( q )  > 0 for all A. Now we calculate the 
integral over q explicitly in equations (41) and (42) by making the substitution z = el4 
50  

?r eigo 

-?r es -p(q) 
F ( a ,  s) = 

zQ dz/iz 
=$ces-[A’+(l-A)2+A(l - A ) ( z + l / z ) + ~ A ’ ( z 2 + 1 / z 2 ) ]  (A31 

the contour being the circle z = 1. We have labelled this integral F (  a, s) for convenience. 
There are four poles in the integrand, at zI ,  z2 and by symmetry two others at l / z ,  
and 1/z2. The quartic equation for the poles can therefore be reduced to two quadratic 
equations giving the poles at 

The large n behaviour of p ( a ;  n) is determined by the region O >  Re(s) >> -1, so we 
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are interested in the value of F(a ,  s) in this regime. The contour in the complex s 
plane is shown in figure A l .  Then Iz2/ > 1 > 11/z2(. For s lying on the branch cut, the 
square root in equation (A4) is pure imaginary so that zI = l / z l  = 1. If we displace s 
slightly above the branch cut, i.e. let s t = s b + i &  with E > O ,  then ( z l l <  1 < l l /z l l .  So 
above the branch cut the poles that contribute the F(a ,  s+) are zI and z2. Below the 
branch cut at s-= Sb- iE ,  the poles that contribute to F ( a ,  s-) are l / z l  and z2. Thus 

F ( a ,  s+) = -- +- Z P + l  

(ZI - l/ZI)(Zl -Z2)(Z,- 1 / 2 2 )  (22- 1/z2)(z2- 1/zl)(z2-zl) 

i t  

Figure A l .  The contour chosen in evaluating the integral in equation (42) shown in the 
complex s plane. The solid circle at the origin represents a first-order pole. The path of 
integration is taken around all branch cuts. 

and 

Z;+l 

(z2 - 1/ Zd[(l/ZJ - ( I /  ZI)l(Z2 - Z I )  
+ 

Expressing equation (42) in terms of F ( j ,  s) 

implies that we have to calculate the value of F ( j ,  s ) /F (O,  s) as s + O  in order to 
calculate the contribution from the pole at s = 0. Now 

and 
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both of which go to 1 as s + 0, since zI  - l / z ,  = 0 at s = 0. The pole at s = 0 therefore 
gives a total contribution of 1 to pn(O;j). 

Now we calculate the contribution from the cut at Im(s) = 0. If we subtract the 
upper from the lower contour we obtain 

In the limit - 1 << s < 0 this reduces to 
s I / 2  

- 1 
(‘I-:) ( l -A) ’12- [A( l -A) ] ’ ’2  

so the integrand along this branch cut behaves as s-”’ for small s. To obtain the large 
n behaviour, we extract the contributions from the lowest order terms in Re(s). We 
have isolated two terms: the first proportional to s-’ which comes from the pole at 
s = 0, and the second proportional to s-”’ which comes from the branch cut at Im( s) = 0. 
It is easy to see that the contribution from all other branch cuts is of lower order in 
Re(s) since if we parametrise s along a branch cut as s = 27rni + x then this contribution 
to p ( 0 ;  1) is proportional to 

x 1 / 2  /a dx enx 
n ’ f O  2 r i n ’ + x  

n=--00 

cc X’l22X = /  d x e n x  - 
n’,O nr2  -I- x2 -a 

d n K l 0  d x x ” *  nx e .  
cc X1l22X 

47r2n2 -I- x2 --cc 
s dx enx Io 

So to leading order in l / n  

e-nx 
dx Iocc 2.rrx112[A( 1 - pn(O; 1) = 1 - 

1 1 1 
2 [A( 1 -A)]’’’ ( r n ) ” ”  

e-n.v2 

(A131 = 1 -- 
= I - Joa .rr[A(1 -A)]’/’ 
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